Alpha-adrenergic receptors have been divided into α_1 and α_2 subtypes. α_1-receptors are responsible for the effects noted in the table above. α_2-receptors are predominantly presynaptic receptors that modulate the release of norepinephrine from the nerve terminal. However, α_2-receptors have been found on the postsynaptic membrane as well. Stimulation of presynaptic α_2-receptors results in the inhibition of the release of norepinephrine into the synaptic cleft.

Activation of β receptors induces adenylyl cyclase, which converts ATP to cyclic-AMP that functions as a secondary messenger within the effector organ cell.

At least 5 subtypes of muscarinic receptors have been identified and labeled M_1, M_5. M_1 receptors appear to modulate ganglia transmission. M_2 receptors are found in the heart and CNS. M_3 receptors appear responsible for smooth muscle contraction in the bronchioles and eye as well as increasing secretion from exocrine glands, such as the salivary glands. M_4 receptors are found largely in the CNS and promote locomotion. M_5 receptors have also been found in the CNS, although their function has not been totally elucidated. Atropine is effective in blocking all 5 types of muscarinic receptors.

Additional Reading: